On cohomology of finitely generated function groups
Autor: | Dipendra C. Sengupta |
---|---|
Rok vydání: | 1994 |
Předmět: | |
Zdroj: | Journal d'Analyse Mathématique. 63:1-17 |
ISSN: | 1565-8538 0021-7670 |
DOI: | 10.1007/bf03008417 |
Popis: | Let Γ be a non-elementary finitely generated Kleinian group with region of discontinuity Ω. Letq be an integer,q ≥ 2. The group Λ acts on the right on the vector space Π2q−2 of polynomials of degree less than or equal to 2q − 2 via Eichler action. We note by Aqq(Ω, Λ) the space of cusp forms for Λ of weight (−2q) and the space of parabolic cohomology classes by PH1 (Λ, Π2q−2). Bers introduced an anti-linear map $$\beta _q^* :A^q \left( {\Omega ,\Gamma } \right) - - - \to PH^1 \left( {\Gamma ,\Omega _{2q - 2} } \right)$$ . |
Databáze: | OpenAIRE |
Externí odkaz: |