On the Quasivarieties Generated by a Finite Group and Lacking Any Independent Bases of Quasi-Identities
Autor: | A. I. Budkin |
---|---|
Rok vydání: | 2020 |
Předmět: |
Finite group
Group (mathematics) General Mathematics media_common.quotation_subject 010102 general mathematics Commutator subgroup Infinity 01 natural sciences Prime (order theory) Combinatorics Nilpotent 0103 physical sciences Exponent 010307 mathematical physics 0101 mathematics Variety (universal algebra) media_common Mathematics |
Zdroj: | Siberian Mathematical Journal. 61:983-993 |
ISSN: | 1573-9260 0037-4466 |
DOI: | 10.1134/s0037446620060038 |
Popis: | Let $ {\mathcal{R}}_{p^{k}} $ be the variety of $ 2 $ -nilpotent groups of exponent $ p^{k} $ with commutator subgroup of exponent $ p $ ( $ p $ is a prime). We prove the infinity of the set of the subquasivarieties of $ {\mathcal{R}}_{p^{k}} $ $ (k\geq 2) $ generated by a finite group and lacking any independent bases of quasi-identities. |
Databáze: | OpenAIRE |
Externí odkaz: |