Exploring the physical origin of the electrocatalytic performance of an amorphous alloy catalyst via machine learning accelerated DFT study

Autor: Siyan Gao, Huijie Zhen, Bo Wen, Jiang Ma, Xi Zhang
Rok vydání: 2022
Předmět:
Zdroj: Nanoscale. 14:2660-2667
ISSN: 2040-3372
2040-3364
DOI: 10.1039/d1nr07661b
Popis: Our Smooth Overlap of Atomic Positions-Machine Learning (SOAP-ML) model not only accelerates the DFT study but also makes a good prediction (MSE = 0.018) of the local atomic environment of a catalyst.
Databáze: OpenAIRE