Exploring the physical origin of the electrocatalytic performance of an amorphous alloy catalyst via machine learning accelerated DFT study
Autor: | Siyan Gao, Huijie Zhen, Bo Wen, Jiang Ma, Xi Zhang |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Nanoscale. 14:2660-2667 |
ISSN: | 2040-3372 2040-3364 |
DOI: | 10.1039/d1nr07661b |
Popis: | Our Smooth Overlap of Atomic Positions-Machine Learning (SOAP-ML) model not only accelerates the DFT study but also makes a good prediction (MSE = 0.018) of the local atomic environment of a catalyst. |
Databáze: | OpenAIRE |
Externí odkaz: |