Moderate Deviations for Ewens-Pitman Sampling Models

Autor: Shui Feng, Stefano Favaro, Fuqing Gao
Rok vydání: 2018
Předmět:
Zdroj: Sankhya A. 80:330-341
ISSN: 0976-8378
0976-836X
DOI: 10.1007/s13171-018-0124-z
Popis: Consider a population of individuals belonging to an infinity number of types, and assume that type proportions follow the Poisson-Dirichlet distribution with parameter α ∈ [0,1) and 𝜃 > −α. Given a sample of size n from the population, two important statistics are the number Kn of different types in the sample, and the number Ml,n of different types with frequency l in the sample. We establish moderate deviation principles for (Kn)n≥ 1 and (Ml,n)n≥ 1. Corresponding rate functions are explicitly identified, which help in revealing a critical scale and in understanding the exact role of the parameters α and 𝜃.
Databáze: OpenAIRE