A Compensation Method for Active Phased Array Antennas: Using a strain-electromagnetic coupling model
Autor: | Congsi Wang, Song Xue, Baoyan Duan, Yan Wang, Wei Gao, Peiyuan Lian, Baofu Tang, Liu Jing, Shuai Yuan, Yu Shi, Zhihai Wang, Du Biao |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | IEEE Antennas and Propagation Magazine. 63:78-88 |
ISSN: | 1558-4143 1045-9243 |
Popis: | Physical deformation due to service loads seriously degrades the electromagnetic performance of active phased array antennas. However, traditional displacement-based compensation methods are moderately difficult to use because displacement measurements generally require stable references, which are hard to realize for antennas in service. For deformed antennas, strain information is directly related to their displacement, and strain sensors can overcome carrier platform constraints to measure real-time strain without affecting the antenna radiation-field distribution. We thus present a compensation method based on strain information for in-service antennas. First, the minimum number of strain sensors is determined as the main modal-order-based modal effective mass fraction. According to the modal method and analysis of spatial phase-distribution errors related to strain, a coupled strain-electromagnetic model is established to evaluate antenna performance from the measured strain. The corresponding excitation phase from the measured strain is adjusted to compensate antenna performance. Finally, the method is experimentally validated using an X-band active phased array antenna under the influence of typical deformation conditions for both boresight and scanned beams. The results demonstrate that the presented method can effectively compensate for the performance of service antennas directly from the measured strain information. |
Databáze: | OpenAIRE |
Externí odkaz: |