Lee distance of cyclic and (1 + uγ)-constacyclic codes of length 2 over F2m+uF2m
Autor: | Hai Q. Dinh, Nilay Kumar Mondal, Pramod Kumar Kewat |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Discrete Mathematics. 344:112551 |
ISSN: | 0012-365X |
DOI: | 10.1016/j.disc.2021.112551 |
Popis: | Let m be a positive integer, and γ be a non-zero element of F 2 m . The Lee distance of all cyclic codes and ( 1 + u γ ) -constacyclic codes of length 2 s over F 2 m + u F 2 m is completely determined. In particular, it is shown that the Lee distance of such codes is independent of the choice of a trace orthogonal basis of F 2 m . |
Databáze: | OpenAIRE |
Externí odkaz: |