Machine-learning-based dynamic IR drop prediction for ECO
Autor: | Chien-Mo Li, Yen-Chun Fang, Heng-Yi Lin, Min-Yan Sui, Eric Jia-Wei Fang |
---|---|
Rok vydání: | 2018 |
Předmět: |
Speedup
Computer science business.industry Signoff 02 engineering and technology Machine learning computer.software_genre 020202 computer hardware & architecture Change order 020204 information systems Scalability 0202 electrical engineering electronic engineering information engineering Limit (mathematics) Artificial intelligence business Power network design computer |
Zdroj: | ICCAD |
Popis: | During design signoff, many iterations of Engineer Change Order (ECO) are needed to ensure IR drop of each cell instance meets the specified limit. It is a waste of resources because repeated dynamic IR drop simulations take a very long time on very similar designs. In this work, we train a machine learning model, based on data before ECO, and predict IR drop after ECO. To increase our prediction accuracy, we propose 17 timing-aware, power-aware, and physical-aware features. Our method is scalable because the feature dimension is fixed (937), independent of design size and cell library. Also, we propose to build regional models for cell instances near IR drop violations to improves both prediction accuracy and training time. Our experiments show that our prediction correlation coefficient is 0.97 and average error is 3.0mV on a 5-million-cell industry design. Our IR drop prediction for 100K cell instances can be completed within 2 minutes. Our proposed method provides a fast IR drop prediction to speedup ECO. |
Databáze: | OpenAIRE |
Externí odkaz: |