Ricci solitons on Lorentzian Walker three-manifolds
Autor: | Barbara De Leo, Giovanni Calvaruso |
---|---|
Rok vydání: | 2010 |
Předmět: |
Line field
Nonlinear Sciences::Exactly Solvable and Integrable Systems General Mathematics Mathematical analysis Degenerate energy levels Ricci flow Mathematics::Differential Geometry Function (mathematics) Nonlinear Sciences::Pattern Formation and Solitons Mathematics Mathematical physics Ricci soliton |
Zdroj: | Acta Mathematica Hungarica. 132:269-293 |
ISSN: | 1588-2632 0236-5294 |
DOI: | 10.1007/s10474-010-0049-z |
Popis: | We investigate Ricci solitons on Lorentzian three-manifolds (M,gf) admitting a parallel degenerate line field. For several classes of these manifolds, described in terms of the defining function f, the existence of non-trivial Ricci solitons is proved. |
Databáze: | OpenAIRE |
Externí odkaz: |