Environmental Optimization for Sub-0.2NM Scanning Transmission Electron Microscopy
Autor: | David A. Muller, T. L. Hoffman, R. Hynes, J.L. Grazul, Frieder H. Baumann |
---|---|
Rok vydání: | 2000 |
Předmět: | |
Zdroj: | Microscopy and Microanalysis. 6:110-111 |
ISSN: | 1435-8115 1431-9276 |
DOI: | 10.1017/s1431927600033043 |
Popis: | Sub-0.2 nm probes can now be readily obtained on Schottky field-emission microscopes[1]. However environmental instabilities are proving to be the limiting factors for atomic resolution spectroscopy and distortion-free annular-dark field imaging, as a result of the long acquisition times (comparable to those required for inline holography[2]), and from the serial nature of the scanning system where instabilities result in image distortions rather than reductions in contrast. Troubleshooting the two most common environmental problems are discussed here.Electromagnetic interference can cause beam deflections in both the scanning system and the spectrometer [3](< 0.3 mG r.ms for 0.3nm, < 0.2 mG for 0.2 nm). These are most easily dealt with before the machine is installed, as substantial rewiring may be necessary. There is little that can be done about quasi-DC fields, such as from elevators and nearby trains and buses. Major sources of AC electromagnetic interference are unbalanced electrical loads. |
Databáze: | OpenAIRE |
Externí odkaz: |