Deep generation of metaphors

Autor: Simon Mille, Andrew Gargett, John A. Barnden
Rok vydání: 2015
Předmět:
Zdroj: TAAI
DOI: 10.1109/taai.2015.7407111
Popis: We report here on progress toward a pipeline for the deep generation of metaphorical expressions in natural language. Our approach uses a combination of artificial intelligence and deep natural language generation. Metaphor is ubiquitous in forms of everyday discourse [1], [2], such as ordinary conversation, news articles, popular novels, advertisements, etc. Metaphor is an important resource for clearly and economically conveying ideas of prime human interest, such as relationships, money, disease, states of mind, passage of time. Since most Artificial Intelligence (AI) research has been about understanding rather than generating metaphorical language, such ubiquity presents a challenge to those working toward improving the ways in which AI systems understand inter-human discourse (e.g. newspaper articles, etc), or produce more natural-seeming language. Recently, there has been a renewed interest in generation, but accounts of metaphor understanding are still relatively more advanced. To redress the balance towards generation of metaphor, we directly tackle the role of AI systems in communication, uniquely combining this with corpus linguistics, deep generation and other natural language processing techniques, in order to guide output toward more natural forms of expression.
Databáze: OpenAIRE