Darboux integrability of the stretch-twist-fold flow
Autor: | Jianghong Bao, Qigui Yang |
---|---|
Rok vydání: | 2013 |
Předmět: |
Polynomial
Integrable system Applied Mathematics Mechanical Engineering Mathematical analysis Zero (complex analysis) Aerospace Engineering Ocean Engineering Darboux integral Darboux vector Exponential function Physics::Fluid Dynamics Flow (mathematics) Control and Systems Engineering Electrical and Electronic Engineering Twist Mathematics |
Zdroj: | Nonlinear Dynamics. 76:797-807 |
ISSN: | 1573-269X 0924-090X |
DOI: | 10.1007/s11071-013-1170-7 |
Popis: | The stretch-twist-fold (STF) flow, as a special case of Stokes flows, arises naturally in dynamo theory. The paper studies the integrability of the STF flow. The paper provides a complete classification of the irreducible Darboux polynomials for the system with all values of the parameter alpha. When the parameter is zero, the STF flow is integrable. When the parameter is more than zero, it is proved not to be Darboux integrable. The paper also proves the system has neither exponential factors nor polynomial first integrals at the parameter alpha more than zero. |
Databáze: | OpenAIRE |
Externí odkaz: |