On Properties of Optimal Paths in First-Passage Percolation

Autor: Shuta Nakajima
Rok vydání: 2018
Předmět:
Zdroj: Journal of Statistical Physics. 174:259-275
ISSN: 1572-9613
0022-4715
DOI: 10.1007/s10955-018-2179-6
Popis: In this paper, we study some properties of optimal paths in the first passage percolation on $$\mathbb {Z}^d$$ and show the following: (i) the number of optimal paths has an exponentially growth if the distribution has an atom; (ii) the means of intersection and union of optimal paths are linear in the distance. For the proofs, we use the resampling argument introduced in van den Berg and Kesten (Ann Appl Probab 3:56–80, 1993) with suitable adaptions.
Databáze: OpenAIRE