An isodiametric problem of fractal dimension
Autor: | Bo Tan, Xin-Rong Dai, Jun Luo, Wei-Hong He |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Geometriae Dedicata. 175:79-91 |
ISSN: | 1572-9168 0046-5755 |
DOI: | 10.1007/s10711-014-0030-z |
Popis: | For $$00\right\} =1$$ and that there is a convex compact set $$A$$ ( $$=A(\lambda )$$ ) with $$\frac{{\mathcal H}^s(A\cap F_\lambda )}{|A|^s}=1$$ . Such a convex compact set $$A$$ is called an “extremal set” of $$F_\lambda $$ with respect to $$s$$ -dimensional Hausdorff measure $${\mathcal H}^s$$ . When $$\lambda $$ is small, say $$\lambda \le \frac{1}{5}$$ , we further show that there exists an extremal set $$A$$ with $$|A|\ge \frac{2}{\sqrt{3}}$$ such that $${\mathcal H}^s(A\cap F_\lambda )={\mathcal H}^s(D_{|A|}\cap F_\lambda )$$ for $$D_{|A|}=\left\{ (x,y): \left( x-\frac{1}{2}\right) ^2+y^2 \le \frac{1}{4}|A|^2\right\} $$ . As an application, we can estimate the value of $${\mathcal H}^s(E_\lambda \!\times \![0,1])$$ to any pre-set error $$\epsilon $$ . |
Databáze: | OpenAIRE |
Externí odkaz: |