Segmentation of LiDAR Intensity Using CNN Feature Based on Weighted Voting

Autor: Masaki Umemura, Kazuhiro Hotta, Kazuo Oda, Hideki Nonaka
Rok vydání: 2017
Předmět:
Zdroj: Lecture Notes in Computer Science ISBN: 9783319598758
ICIAR
Popis: We propose an image labeling method for LiDAR intensity image obtained by Mobile Mapping System (MMS). Conventional segmentation method using CNN and KNN could give high accuracy but the accuracies of objects with small area are much lower than other classes with large area. We solve this issue by using voting cost. The first cost is determined from a local region. Another cost is determined from surrounding regions of the local region. Those costs become large when labeling result corresponds to class label of the region. In experiments, we use 36 LIDAR intensity images with ground truth labels. We divide 36 images into training (28 images) and test sets (8 images). We use class average accuracy as evaluation measures. Our proposed method gain 84.75% on class average accuracy, and it is 9.22% higher than our conventional method. We demonstrated that the proposed costs are effective to improve the accuracy.
Databáze: OpenAIRE