Discovering New Hydrocarbon Pay Sand Beyond The Wellbore With Reservoir Mapping While Drilling Tool – A Case Study From Offshore Sabah, Malaysia

Autor: Tomi Afandi, Juhaidi Jaafar, M Ikhlas Rahim, Ko Ko Kyi, Ng Kiang Fei, Nazri Abdul Latiff, Kok Kwi Yen, Danial Saadon
Rok vydání: 2016
Předmět:
Zdroj: All Days.
DOI: 10.2118/182184-ms
Popis: Tango Field, located offshore Sabah in East Malaysia, is a mature field which has been producing oil and gas for more than forty years. This field has many fault blocks, thus creating barriers to fluid and pressure communication between different fault blocks. Furthermore, the reservoir sands are turbidite sands which are difficult to correlate across the whole field. Being fan lobes, it is not easy to target these sands in drilling development wells. As part of the campaign to improve recovery and sustain production, two infill wells were drilled during 2014, by sidetracking two existing wells from the Tango-B Platform, which is located in the western part of the field. The target reservoirs are M1 and M2 sands, which still carry some upside potential based on the latest review of the field performance. To properly target and penetrate these sands in the planned wells, the Reservoir Mapping While Drilling LWD (DDEM) tool, in combination with standard triple combo LWD (Logging While Drilling) tools, was deployed. This is to ensure that the well trajectory stays within the targeted sands and the bed boundaries are detected long before the drill bit exits the sand body. Unlike previous deep reading LWD resistivity tools, the DDEM tool is a Deep Directional Electromagnetic Propagation tool which has the capability to see about 30 meters laterally beyond the wellbore. While drilling the first well, the target sands were penetrated as planned. However, there was a pleasant surprise where a new hydrocarbon sand was detected by the DDEM tool about 10 meters below the wellbore. The DDEM reservoir mapping software was used to image the newly found sand body. Based on this new finding, the drilling Bottom Hole Assembly was pulled back and the hole was side-tracked to target this new sand, which was successfully penetrated and completed. This new sand, which would not have been discovered with standard LWD tools has increased the well production by a factor of two or more. Being a turbidite sand, it was not picked up on the surface seismic section. The reservoir mapping software technology, together with the deep sensing resistivity imaging LWD tool, was instrumental in finding the new hydrocarbon sand which has substantially increased the production of Tango Field.
Databáze: OpenAIRE