Electrode surface modification of graphene-MnO2 supercapacitors using molecular dynamics simulations
Autor: | Mominul Islam, Shakhawat H. Firoz, Mohammad Mozammal Hosen, Musanna Galib, Joyanta K. Saha, Ashiqur Rahman |
---|---|
Rok vydání: | 2020 |
Předmět: |
Materials science
010304 chemical physics Organic Chemistry Ionic bonding Electrolyte 010402 general chemistry 01 natural sciences Catalysis 0104 chemical sciences Computer Science Applications Ion Inorganic Chemistry Molecular dynamics Computational Theory and Mathematics Chemical physics 0103 physical sciences Electrode Surface modification Surface charge Electric potential Physical and Theoretical Chemistry |
Zdroj: | Journal of Molecular Modeling. 26 |
ISSN: | 0948-5023 1610-2940 |
DOI: | 10.1007/s00894-020-04483-5 |
Popis: | In this study, molecular dynamics (MD) simulations have been performed to explore the variation of ion density and electric potential due to electrode surface modification. Two different surface morphologies, having planer and slit pore with different conditions of surface charge, have been studied for graphene-MnO2 surface using LAMMPS. For different pore widths, the concentration of ions in the double layer is observed to be very low when the surface of the graphene-MnO2 electrode is charged. With a view to identify the optimal pore size for the simulation domain considered, three different widths for the nano-slit type pores and the corresponding ion-ion interactions are examined. Though this effect is negligible for pores with 9.23 and 3.55 A widths, a considerable increase in the ionic concentration within the 7.10 A pores is observed when the electrode is kept neutral. The edge region of these nano-slit pores leads to effective energy storage by promoting ion separation and a significantly higher charge accumulation is found to occur on the edges compared to the basal planes. For the simulation domain of the present study, partition coefficient is maximum for a pore size of 7.10 A, indicating that the ions’ penetration and movement into nano-slit pores are most favorable for this optimum pore size for MnO2-graphene electrodes with aqueous NaCl electrolyte. |
Databáze: | OpenAIRE |
Externí odkaz: |