Long time dynamics of the 3D radial NLS with the combined terms

Autor: Jianwei Yang, Gui Xiang Xu
Rok vydání: 2016
Předmět:
Zdroj: Acta Mathematica Sinica, English Series. 32:521-540
ISSN: 1439-7617
1439-8516
DOI: 10.1007/s10114-016-5401-y
Popis: In this paper, we study the scattering and blow-up dichotomy result of the radial solution to nonlinear Schrodinger equation (NLS) with the combined terms $$i{u_t} + \Delta u = - {\left| u \right|^4}u + {\left| u \right|^{p - 1}}u,\;1 + \frac{4}{3} < p < 5$$ in energy space H1(ℝ3). The threshold energy is the energy of the ground state W of the focusing, energy critical NLS, which means that the subcritical perturbation does not affect the determination of threshold, but affects the scattering and blow-up dichotomy result with subcritical threshold energy. This extends algebraic perturbation in a previous work of Miao, Xu and Zhao [Comm. Math. Phys., 318, 767–808 (2013)] to all mass supercritical, energy subcritical perturbation.
Databáze: OpenAIRE