Stenoscelida aurantiacus Müller & Garcia & Fonseca 2022, gen. et sp. nov

Autor: Müller, Rodrigo Temp, Garcia, Mauricio Silva, Fonseca, André de Oliveira
Rok vydání: 2022
Předmět:
ISSN: 1477-2019
0272-4634
DOI: 10.5281/zenodo.7331379
Popis: Stenoscelida aurantiacus gen. et sp. nov. (Figs 1–5) Holotype. CAPPA/UFSM 0293, a complete and articulated right hind limb. Etymology. The genus combines the Greek words UIƐvόç (¼ narrow) and UĸƐƛ o ç (¼ hind leg), referring to the slender leg of the creature. The specific epithet derives from the Latin word aurantiacus (¼ orange), in allusion to the orange colour of the outcropping sediments of the Varzea do Agudo site (Fig. 1B). Type locality. Varzea do Agudo site (¼ Janner site; 29 ° 39 0 10.89 00 S, 53 ° 17 0 34.20 00 W), Agudo, Rio Grande do Sul, Brazil (Fig. 1). Stratigraphic horizon. Lower portion of the Candelaria Sequence (Horn et al. 2014) of the Santa Maria Supersequence (Zerfass et al. 2003), Parana Basin. The predominance of the cynodont genus Exaeretodon places the site in the upper part (Exaeretodon sub-Assemblage Zone; Muller & Garcia 2020) of the Hyperodapedon Assemblage Zone (Schultz et al. 2020), which is biostratigraphically correlated with the Exaeretodon biozone from the Ischigualasto Formation (Martınez et al. 2013). A Bayesian age-model for the profile of the Ischigualasto Formation at the Hoyada del Cerro Las Lajas locality in Argentina recovered an age of 227.94 + 0.83/ ¯ 1.67 for the top of the Hyperodapedon AZ (Desojo et al. 2020), indicating an age of c. 228 Ma for the Exaeretodon biozone. A similar age (late Carnian/early Norian, Late Triassic) for the Exaeretodon sub-Assemblage Zone is inferred in the Candelaria Sequence. Ontogenetic assessment. The presence of some muscle attachment structures (e.g. anterior trochanter; anterolateral scar) in the femur of CAPPA/UFSM 0293 suggests some degree of development if the ontogenetic pathways of other archosauriforms are considered (Griffin & Nesbitt 2016). However, it is currently not possible to confirm whether the specimen reached its maximum size or not. Diagnosis. Stenoscelida aurantiacus differs from all other known proterochampsids in (* local autapomorphies): possessing a slender femur; presence of an anterior trochanter on the femoral head; presence of a raised anterolateral scar above the anterior trochanter; fourth trochanter restricted to the proximal half of the femur; tibia approximately 84% the total length of the femur; in proximal view, the cnemial crest of the tibia is subequal in size to the proximal condyles; fibula with an iliofibularis tubercle on the proximal portion of the shaft *; proximal third of the fibular shaft is anteroposteriorly expanded, tapering distally *; ratio between the minimum midshaft width of metatarsal II and its total length is 0.12; ratio between femoral length and metatarsal III is 2.5; and digit V with a phalanx *. Description and comparison Overview The preserved right hind limb of the holotype is entirely articulated (Fig. 2). Some portions of the specimen are covered by a thick concretion layer, especially the femoral midshaft and the ankle. The external surface is wellpreserved in several places, revealing some muscle attachment points. However, the specimen was deformed by sedimentary compression. Therefore, the elements are lateromedially compressed, affecting the original shape. As result, the midshaft of the limb bones is collapsed, showing artificial longitudinal grooves or sulci. Part of the fibular midshaft is not preserved. The same is true for the distal portion of metatarsal IV, precluding us from determining its total length. According to the femoral length (147 mm), the specimen is smaller than the Argentinian taxa from the Ischigualasto Formation: Pseudochampsa ischigualastensis (155 mm; Trotteyn & Ezcurra 2014) and Proterochampsa barrionuevoi (179 mm; Trotteyn 2011). Femur The femur (Fig. 3) is sigmoid in lateral and medial views. The extremities are well ossified and expanded. The femoral head is mainly anteriorly directed, whereas in other proterochampsids it is more medially oriented. Diagenetic processes might have exaggerated this condition. The general morphology of the femoral head resembles that of proterochampsids, whereas it differs from the anteromedially expanded femoral head of dinosaurs (Nesbitt 2011) and from the hook-shaped head of lagerpetids and pterosaurs (Ezcurra et al. 2020a). The proximal articular surface bears a shallow straight groove (Fig. 3C), which is usually absent in proterochampsids, except in an unnamed rhadinosuchine (Ezcurra et al. 2019; CRILAR-Pv 491) from the Chanares Formation. There is an anterior tuber (sensu Ezcurra 2016) on the proximal portion of the femur, and although the bone lacks a posteromedial tuber, the posterior tuber is present. The greater trochanter is rounded and tall (Fig. 3B), differing from the typical angled trochanter of dinosaurs, and in the same way, there is no dorsolateral trochanter on the proximal portion of the bone. Conversely, the anterolateral surface bears a raised and rugose area (Fig. 3B) where the anterior (¼ lesser) trochanter is reported for a number of archosauriforms (e.g. ornithosuchids, aetosaurs, dinosauriforms). Whereas the anterior trochanter is absent in several proterochampsids (Trotteyn et al. 2013), the structure occurs in the holotype of Gualosuchus reigi (PULR-V 05; M. D. Ezcurra, pers. comm.). A trochanteric shelf is not associated with the anterior trochanter, and the proximal-most portion of this trochanter is completely connected to the shaft. Slightly above the proximal tip of the anterior trochanter there is an additional scar, which resembles the anterolateral scar (sensu Griffin & Nesbitt 2016) of aphanosaurs and dinosauriforms. There is a similar scar in Gualosuchus reigi (PULR-V 05; M. D. Ezcurra, pers. comm.). The transition from the femoral head to the shaft is smooth. The fourth trochanter rests on the posterior surface of the proximal third of the femur (Fig. 3A). It is crest-like and symmetrical in shape. Its medial surface is ornamented with muscle scars. The distal portion of the fourth trochanter does not extend further down along the femoral shaft. In contrast, the fourth trochanter is strongly proximodistally developed in Gualosuchus reigi and Chanaresuchus bonapartei (Ezcurra et al. 2019). The midshaft is slender. The robustness index (RI, sensu Wilson & Upchurch 2003; i.e. average of the greatest widths of the proximal end, midshaft and distal end of the element divided by the length of the element) is 0.14. For comparison, this is slightly slenderer than that of some early dinosaurs, such as Gnathovorax cabreirai (0.16) and Buriolestes schultzi (0.15; Muller & Garcia 2022). The anterior surface of the distal portion bears an extensor fossa (Fig. 3D), which results in a concave anterior margin in distal view. On the opposite side, the popliteal fossa is well delimited (Fig. 3E). It is proximodistally short, approximately 10% of the total length of the bone. This condition distinguishes the specimen from silesaurids and aphanosaurs, where the fossa is considerably longer (Nesbitt et al. 2010, 2017). The distal condyles are approximately at the same level in anterior or posterior views. In addition, the lateral surface between the lateral condyle and the crista tibiofibularis is smooth, lacking a deep groove. Tibia The tibia (Fig. 4) is 84% the total length of the femur (Table 1). This resembles the condition in Pseudochampsa ischigualastensis, where it is approximately 82% (Trotteyn & Ezcurra 2014), and differs from both Proterochampsa barrionuevoi (74.5%; Trotteyn 2011) and Tropidosuchus romeri (100%; Arcucci 1990). The bone is straight in anterior/posterior or medial/lateral views. The proximal portion is strongly expanded and is triangular in shape in proximal view (Fig. 4C). The anterior half of the proximal margin is proximally projected in medial view. In medial or lateral views, the well-developed cnemial crest extends anteriorly, and in proximal view it is straight and the anterior margin is rounded. The cnemial crest is sub-equal in size regarding the proximal condyles, distinguishing the new species from Proterochampsa barrionuevoi, where the crest is proportionally smaller. The posterior and lateral condyles are sub-equal in size. The lateral condyle is offset regarding the posterior condyle. The posterior condyle does not taper posteriorly. The presence of any crest on the lateral surface of the proximal portion of the bone is uncertain. The midshaft is ovoid in cross-section. The bone wall is thick, distinct from the thin walls of several pan-avians and some crocodylomorphs (Kellner et al. 2022). The distal portion of the bone is moderately expanded. It lacks a posterolateral process. There is a proximodistally oriented groove on the lateral surface of the distal portion (Fig. 4F). It is more pronounced in Proterochampsa barrionuevoi (Trotteyn 2011). The distal outline of the tibia is elliptical. It is anteroposteriorly longer than transversely wide. · Fibula The total length of the fibula (Fig. 4) is uncertain because a portion of the midshaft is not preserved. The bone is straight in anterior or lateral views, and the proximal articular surface is anteroposteriorly expanded and transversely compressed (Fig. 4C). It differs from the rounded to elliptical proximal end of some pseudosuchians (e.g. Dynamosuchus collisensis, Prestosuchus chiniquensis). In proximal view, the lateral margin is convex but the medial margin is concave. In lateral view, the posterior margin projects posteriorly, whereas the anterior margin lacks any anterior expansion. Conversely, in non-proterochampsid proterochampsians (e.g. Vancleavea campi; Litorosuchus somnii; Jaxtasuchus salomoni) the proximal portion is symmetrical to nearly symmetrical in lateral view. The posterior margin of the proximal third of the bone is sharp. The proximal third of the midshaft is anteroposteriorly expanded, being wider than the tibia (Fig. 4F). Conversely, the shaft becomes extremely slender for the next two-thirds, being approximately two times narrower than the tibia. This is an unusual condition and distinguishes the specimen from other proterochampsids. Furthermore, there is an iliofibularis tubercle on the proximal portion of the shaft (Fig. 4E, F), a feature absent in other proterochampsids. The condition in Stenoscelida aurantiacus differs from the more distally located tubercle of several pseudosuchians and rhynchosaurs. The distal portion of the fibula is gently expanded. It is approximately 0.45 times the maximum length of the proximal articular surface (Table 1). There is a faint longitudinal ridge running on the anterolateral margin. The distal articular surface is flat to concave. In distal view (Fig. 4D), it is ovoid to triangular. Proximal tarsals The astragalus and calcaneum are poorly preserved (Figs 2, 5). The astragalus is transversely wider (20.5 mm) than anteroposteriorly long (11 mm). The anterior margin of the astragalus is concave in dorsal view (Figs 2B, 5B). A transverse groove runs on the posterior surface of the bone. The presence or absence of foramina on this posterior groove is uncertain because it is badly preserved. As in other proterochampsids, the tibial facet is wider than the fibular facet. The latter facet is dorsolaterally oriented, resembling the condition of Chanaresuchus bonapartei and Proterochampsa barrionuevoi, whereas in Pseudochampsa ischigualastensis it is dorsally oriented (Trotteyn & Ezcurra 2014). The ventral surface of the bone is transversely convex. The calcaneum is 10 mm in width (approximately half of the astragalar width). There is a posterolaterally oriented calcaneal tuber. This structure is sub-rectangular, with a straight lateral margin. In dorsal view, the posterolateral corner of the calcaneal tuber is rounded (Fig. 5B). Metatarsals As in other proterochampsids, the metatarsals (Fig. 5) overlap each other. Metatarsal I is shorter than metatarsals II–IV (Fig. 5C). It is almost three times shorter than metatarsal III (Table 1). The proximal articular surface is transversely expanded. There is a longitudinal smooth crest on the dorsomedial corner of the proximal half of the bone. The distal end is moderately expanded. The lateral condyle is more pronounced dorsally than the medial one. There is a shallow extensor fossa on the dorsal surface of the distal portion. The presence of collateral ligament pits on the condylar sides is uncertain. The distal articular surface is not strongly ginglymoid. Metatarsal II is the stoutest metatarsal. The proximal articular surface is strongly expanded (Table 1). The ratio between the proximal articular surface and the total length is 0.39. It is 0.36 in Rhadinosuchus gracilis (Ezcurra et al. 2015). Conversely, the shaft is stouter in Rhadinosuchus gracilis, where the ratio between the minimum midshaft width and the total length of metatarsal II is 0.17. In Stenoscelida aurantiacus it is 0.12. On the dorsal surface of the distal portion, there is a triangular extensor fossa. It is not possible to determine if the articular surface is ginglymoid. There is no evidence of a collateral ligament pit on the medial surface of the medial condyle. On the other hand, the lateral surface of the lateral condyle bears a well-delimited collateral ligament pit (Fig. 5B). In dorsal view, the lateral condyle is straight, whereas the medial condyle is slightly medially oriented. Both condyles are equally expanded distally, which is distinct from Rhadinosuchus gracilis, where the lateral condyle is far more extended distally (Ezcurra et al. 2015). Metatarsal III is the longest (Table 1), whereas its midshaft is slenderer than that of metatarsal II. Its proximal articular surface is moderately expanded (maximum proximal width is 14 mm), far less than the proximal articular surface of metatarsal II (19 mm). The distal articular surface resembles that of metatarsal II, with a marked extensor fossa on the dorsal surface and a collateral ligament pit on the lateral surface of the lateral condyle (Fig. 5B). The presence of the collateral ligament pit on the medial condyle is uncertain (it is covered by thick sediment). The lateral condyle is slightly more pronounced laterally than the lateral condyle of metatarsal II. Metatarsal IV is incomplete (Fig. 5B). The element does not preserve the distal portion. Therefore, its total length is uncertain. The preserved part is 30 mm in length. Despite its condition, the element is longer than metatarsals I and V. The proximal articular surface is not transversely expanded. The general morphology of the element is simple. It comprises an elongated and compressed shaft. Distinct from the previous metatarsals, metatarsal IV is plate-like in cross-section. Metatarsal V is the shortest (Fig. 5B), being slightly shorter than phalanx 1 of digit I. In this sense, Stenoscelida aurantiacus differs from Pseudochampsa ischigualastensis, where metatarsal V is slightly longer than the phalanx 1 from digit I (Trotteyn & Ezcurra 2014). The proximal articular surface is moderately expanded and ‘U’-shaped in ventral view. The shaft tapers distally to an unexpanded and featureless distal end, which bears no distal condyles. Phalanges The phalangeal formula is 2-3-4-?-1 (Fig. 5). Other proterochampsids lack phalanges in digit V. The first phalanx of digit I is longer than broad. This is the same pattern observed in the other phalanges of the specimen. This phalanx is shorter than the first phalanx from digits II and III (Table 2). The dorsal intercondylar process is moderately developed and the distal articular surface is ginglymoid. There is an extensor depression on the dorsal surface of the distal portion. This surface receives the extensor tubercle from the ungual phalanx. The ungual (distal-most) phalanx of digit I lacks its distal half. The phalanx is transversely compressed and tapers distally (at least, the preserved portion). The flexor tubercle is poorly developed (Fig. 5A). The first phalanx of digit II is similar in shape to that of digit I. However, the phalanx from digit II is larger (Fig. 5C). Phalanx 2 is slightly smaller. Its anatomy is obscured by a thick layer of concretion. The ungual phalanx of digit II is clearly the largest ungual. It is transversely compressed and tapers to a sharp point. The ungual is not ventrally recurved and lacks a well-developed flexor tubercle. Digit III is the longest (Fig. 5B). The first phalanx from digit III is sub-equal in length to the first phalanx of digit II (Table 2). On the other hand, the shaft of this phalanx is more gracile. The extensor fossa is deep on the dorsal surface of the distal portion. The subsequent phalanges of this digit are smaller. The ungual is remarkably smaller than that of digit II. The number of phalanges in digit IV is unknown and the distal portion of metatarsal IV is not preserved. Therefore, the absence of phalanges is ambiguous. The phalanx of digit V (Fig. 5A) is reduced to an elongated structure with a concave proximal articular surface. No condyles or other structures are present in this vestigial element. Phylogenetic results The phylogenetic analysis recovered 39,200 most parsimonious trees (MPTs) of 6287 steps (consistency index ¼ 0.18375; retention index ¼ 0.63457). Stenoscelida aurantiacus nests within Proterochampsidae in all MPTs (Fig. 6A). The clade is supported by 19 synapomorphies, of which three are coded for Stenoscelida aurantiacus: 1) midshaft diameter of metatarsal II is more than the midshaft diameter of metatarsal I (ch. 572: 0 ! 1); 2) midshaft diameter of metatarsal IV is lower than that of metatarsal III (ch. 573: 0 ! 1); and 3) crest-like fourth trochanter, dorsoventrally/anteroposteriorly taller than or equal to the shaft at its minimum depth (ch. 803: 1 ! 2). Proterochampsidae is the sister group to Doswelliidae, which is composed of Rugarhynchus sixmilensis, Sphodrosaurus pennsylvanicus, Doswellia kaltenbachi and Jaxtasuchus salomoni. The clade supporting Proterochampsidae + Doswelliidae is in a trichotomy with Polymorphodon adorfi and an unnamed clade composed of Vancleavea campi and Litorosuchus somnii. These clades are included within Proterochampsia. Regarding the internal relationships of Proterochampsidae, there is a polytomy composed of Stenoscelida aurantiacus, Tropidosuchus romeri, Cerritosaurus binsfeldi, Gualosuchus reigi, both species of Proterochampsa, and Rhadinosuchinae in the strict consensus tree (Fig. 6A). Given the absence of overlapping elements between the new taxon and several other proterochampsids (e.g. Proterochampsa nodosa, Cerritosaurus binsfeldi), these unresolved affinities are unsurprising. The new taxon, however, does not nest within Rhadinosuchinae in any of the MPTs, thus Stenoscelida aurantiacus is a non-rhadinosuchine proterochampsid. The clade Rhadinosuchinae is composed of a trichotomy including Rhadinosuchus gracilis, Pse
Published as part of Müller, Rodrigo Temp, Garcia, Mauricio Silva & Fonseca, André de Oliveira, 2022, A new proterochampsid (Archosauriformes: Proterochampsia) from the Late Triassic of southern Brazil and the emergence of archosaurian hind limb traits, pp. 1-19 in Journal of Systematic Palaeontology 20 (1) on pages 3-15, DOI: 10.1080/14772019.2022.2128913, http://zenodo.org/record/7331376
{"references":["Horn, B., Melo, T., Schultz, C., Philipp, R., Kloss, H. & Goldberg, K. 2014. A new third-order sequence stratigraphic framework applied to the Triassic of the Parana Basin, Rio Grande do Sul, Brazil, based on structural, stratigraphic and paleontological data. Journal of South American Earth Sciences, 55, 123 - 132.","Zerfass, H., Lavina, E. L., Schultz, C. L., Garcia, A. J. V., Faccini, U. F. & Chemale, F. Jr. 2003. Sequence stratigraphy of continental Triassic strata of Southernmost Brazil: a contribution to Southwestern Gondwana palaeogeography and palaeoclimate. Sedimentary Geology, 161, 85 - 105. doi: 10.1016 / S 0037 - 0738 (02) 00397 - 4","Schultz, C. L., Martinelli, A. G., Soares, M. B., Pinheiro, F. L., Kerber, L., Horn, B. L., Pretto, F. A., M uller €, R. T. & Melo, T. P. 2020. Triassic faunal successions of the Parana Basin, southern Brazil. Journal of South American Earth Sciences, 104, 102846. doi: 10.1016 / j. jsames. 2020.102846","Martinez, R. N., Apaldetti, C., Alcober, O. A., Colombi, C. E., Sereno, P. C., Fernandez, E., Malnis, P. S., Correa, G. A. & Abelin, D. 2013. Vertebrate succession in the Ischigualasto Formation. Memoir of the Society of Vertebrate Paleontology, 12, 10 - 30.","Desojo, J. B., Fiorelli, L. E., Ezcurra, M. D., Martinelli, A. G., Ramezani, J., Da-Rosa, A., Baczko, M. B., Trotteyn, M. J., Montefeltro, F. C., Ezpeleta, M. & Langer, M. C. 2020. The Late Triassic Ischigualasto Formation at Cerro Las Lajas (La Rioja, Argentina): fossil tetrapods, high-resolution chronostratigraphy, and faunal correlations. Scientific Reports, 10, 12782. doi: 10.1038 / s 41598 - 020 - 67854 - 1","Griffin, C. & Nesbitt, S. J. 2016. The femoral ontogeny and long bone histology of the Middle Triassic (? late Anisian) dinosauriform Asilisaurus kongwe and implications for the growth of early dinosaurs. Journal of Vertebrate Paleontology, 36, e 1111224. doi: 10.1080 / 02724634.2016. 1111224","Trotteyn, M. J. & Ezcurra, M. D. 2014. Osteology of Pseudochampsa ischigualastensis gen. et comb. nov. (Archosauriformes: Proterochampsidae) from the early Late Triassic Ischigualasto Formation of northwestern Argentina. PLoS ONE, 9, e 111388. doi: 10.1371 / journal. pone. 0111388","Trotteyn, M. J. 2011. Material postcraneano de Proterochampsa barrionuevoi Reig 1959 (Diapsida: Archosauriformes) del Triasico Superior del centro-oeste de Argentina. Ameghiniana, 48, 424 - 446.","Nesbitt, S. J. 2011. The early evolution of archosaurs: relationships and the origin of major clades. Bulletin of the American Museum of Natural History, 352, 1 - 292.","Ezcurra, M. D., Nesbitt, S. J., Bronzati, M., Dalla Vecchia, F. M., Agnolin, F. L., Benson, R. B., Brisson Egli, F., Cabreira, S. F., Evers, S. W. & Gentil, A. R. 2020 a. Enigmatic dinosaur precursors bridge the gap to the origin of Pterosauria. Nature, 588, 445 - 449.","Ezcurra, M. D., Gower, D. J., Sennikov, A. G. & Butler, R. J. 2019. The osteology of the holotype of the early erythrosuchid Garjainia prima (Diapsida: Archosauromorpha) from the upper Lower Triassic of European Russia. Zoological Journal of the Linnean Society, 185, 717 - 783.","Ezcurra, M. D. 2016. The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms. PeerJ, 4, e 1778. doi: 10. 7717 / peerj. 1778","Trotteyn, M. J., Arcucci, A. B. & Raugust, T. 2013. Proterochampsia: an endemic archosauriform clade from South America. Geological Society of London, Special Publications, 379, 59 - 90.","Wilson, J. A. & Upchurch, P. 2003. A revision of Titanosaurus Lydekker (Dinosauria-Sauropoda), the first dinosaur genus with a ' Gondwanan' distribution. Journal of Systematic Palaeontology, 1, 125 - 160.","Nesbitt, S. J., Sidor, C. A., Irmis, R. B., Angielczyk, K. D., Smith, R. M. & Tsuji, L. A. 2010. Ecologically distinct dinosaurian sister group shows early diversification of Ornithodira. Nature, 464, 95 - 98.","Nesbitt, S. J., Butler, R. J., Ezcurra, M. D., Charig, A. J. & Barrett, P. M. 2017. The anatomy of Teleocrater rhadinus, an early avemetatarsalian from the lower portion of the Lifua Member of the Manda Beds (Middle Triassic). Memoir of the Society of Vertebrate Paleontology, 17, 142 - 177.","Arcucci, A. B. 1990. Un nuevo Proterochampsidae (Reptilia- Archosauriformes) de la fauna local de Los Chanares (Triasico Medio), La Rioja, Argentina. Ameghiniana, 27, 365 - 378.","Kellner, A. W., Holgado, B., Grillo, O., Pretto, F. A., Kerber, L., Pinheiro, F. L., Soares, M. B., Schultz, C. L., Lopes, R. T., Araujo, O. & M uller €, R. T. 2022. Reassessment of Faxinalipterus minimus, a purported Triassic pterosaur from southern Brazil with the description of a new taxon. PeerJ, 10, e 13276. doi: 10. 7717 / peerj. 13276","Ezcurra, M. D., Desojo, J. B. & Rauhut, O. W. M. 2015. Redescription and phylogenetic relationships of the proterochampsid Rhadinosuchus gracilis (Diapsida: Archosauriformes) from the early Late Triassic of southern Brazil. Ameghiniana, 52, 391 - 417. doi: 10.5710 / AMGH. 28.04.2015.2867","Ezcurra, M. D. & Sues, H. - D. 2021. A re-assessment of the osteology and phylogenetic relationships of the enigmatic, large-headed reptile Sphodrosaurus pennsylvanicus (Late Triassic, Pennsylvania, USA) indicates archosauriform affinities. Journal of Systematic Palaeontology, 19, 1643 - 1677. doi: 10.1080 / 14772019.2022.2057820","Price, L. I. 1946. Sobre um novo pseudosuquio do Triassico Superior do Rio Grande do Sul. Boletim Divisao de Geologia e Mineralogia, 120, 1 - 38.","Trotteyn, M. J. & Ezcurra, M. D. 2020. Redescription of the holotype of Chanaresuchus bonapartei Romer, 1971 (Archosauriformes: Proterochampsidae) from the Upper Triassic rocks of the Cha ~ nares Formation of north-western Argentina. Journal of Systematic Palaeontology, 18, 1415 - 1443.","Ezcurra, M. D., Jones, A. S. Gentil, A. R. & Butler, R. J. 2020 b. Early archosauromorphs: the crocodile and dinosaur precursors. Pp. 1 - 11 in B. Fath (ed.) Encyclopedia of geology. Second Edition. Elsevier, Amsterdam.","Trotteyn, M. J. & Haro, J. A. 2011. The braincase of a specimen of Proterochampsa Reig (Archosauriformes: Proterochampsidae) from the Late Triassic of Argentina. Palaontologische Zeitschrift, 85, 1 - 17.","Bestwick, J., Godoy, P. L., Maidment, S. C., Ezcurra, M. D., Wroe, M., Raven, T. J., Bonsor, J. A. & Butler, R. J. 2022. Relative skull size evolution in Mesozoic archosauromorphs: potential drivers and morphological uniqueness of erythrosuchid archosauriforms. Palaeontology, 65, e 12599. doi: 10.1111 / pala. 12599","Langer, M. C., Ribeiro, A. M., Schultz, C. L. & Ferigolo, J. 2007. The continental tetrapod-bearing Triassic of south Brazil. New Mexico Museum of Natural History and Science, Bulletin, 41, 201 - 218.","Spiekman, S. N. F. & Scheyer, T. M. 2019. A taxonomic revision of the genus Tanystropheus (Archosauromorpha, Tanystropheidae). Palaeontologia Electronica, 22 (3), 80. doi: 10.26879 / 1038","Nesbitt, S. J., Stocker, M. R., Ezcurra, M. D., Fraser, N. C., Heckert, A. B., Parker, W. G., Mueller, B., Sengupta, S., Bandyopadhyay, S., Pritchard, A. C. & Marsh, A. D. 2022. Widespread azendohsaurids (Archosauromorpha, Allokotosauria) from the Late Triassic of western USA and India. Papers in Palaeontology, 8, e 1413. doi: 10.1002 / spp 2.1413","Spiekman, S. N. F. 2018. A new specimen of Prolacerta broomi from the lower Fremouw Formation (Early Triassic) of Antarctica, its biogeographical implications and a taxonomic revision. Scientific Reports, 8, 17996. doi: 10.1038 / s 41598 - 018 - 36499 - 6","Maidment, S. C. R., Sennikov, A. G., Ezcurra, M. D., Dunne, E. M., Gower, D. J., Hedrick, B. P., Meade, L. E., Raven, T. J., Paschchenko, D. I. & Butler, R. J. 2020. The postcranial skeleton of the erythrosuchid archosauriform Garjainia prima from the Early Triassic of European Russia. Royal Society Open Science, 7, 201089. doi: 10.1098 / rsos. 201089","Butler, R. J., Jones, A. S., Buffetaut, E., Mandl, G. W., Scheyer, T. M. & Schultz, O. 2019. Description and phylogenetic placement of a new marine species of phytosaur (Archosauriformes: Phytosauria) from the Late Triassic of Austria. Zoological Journal of the Linnean Society, 187, 198 - 228.","Desojo, J. B., Ezcurra, M. D. & Schultz, C. L. 2011. An unusual new archosauriform from the Middle - Late Triassic of southern Brazil and the monophyly of Doswelliidae. Zoological Journal of the Linnean Society, 161, 839 - 871.","Roberto-Da-Silva, L. C., Desojo, J. B., Cabreira, S. R. F., Aires, A. S. S., M € uller, R. T., Pacheco, C. P. & Dias- Da-Silva, S. R. 2014. A new aetosaur from the Upper Triassic of the Santa Maria Formation, southern Brazil. Zootaxa, 3764, 240 - 278.","Roberto-Da-Silva, L., M uller €, R. T., Franca, M. A. G. D., Cabreira, S. F. & Dias-Da-Silva, S. 2020. An impressive skeleton of the giant top predator Prestosuchus chiniquensis (Pseudosuchia: Loricata) from the Triassic of Southern Brazil, with phylogenetic remarks. Historical Biology, 32, 976 - 995.","Griffin, C. T., Bano, L. S., Turner, A. H., Smith, N. D., Irmis, R. B. & Nesbitt, S. J. 2019. Integrating gross morphology and bone histology to assess skeletal maturity in early dinosauromorphs: new insights from Dromomeron (Archosauria: Dinosauromorpha). PeerJ, 7, e 6331. doi: 10. 7717 / peerj. 6331","Ezcurra, M. D., Montefeltro, F. C., Pinheiro, F. L., Trotteyn, M. J., Gentil, A. R., Lehmann, O. E. & Pradelli, L. A. 2021. The stem-archosaur evolutionary radiation in South America. Journal of South American Earth Sciences, 105, 102935. doi: 10.1016 / j. jsames. 2020. 102935","Barberena, M. C. 1982. Uma nova especie de Proterochampsa (P. nodosa, sp. nov.) do Triassico do Brasil. Anais da Academia Brasileira de Ci ^ encias, 54, 127 - 141.","Sim ~ ao-Oliveira, D., Pinheiro, F. L., De Andrade, M. B. & Pretto, F. A. 2022. Redescription, taxonomic revaluation and phylogenetic affinities of Proterochampsa nodosa (Archosauriformes: Proterochampsidae) from the early Late Triassic of the Candelaria Sequence (Santa Maria Supersequence). Zoological Journal of the Linnean Society. doi: 10.1093 / zoolinnean / zlac 048","Sereno, P. C. 1991. Basal archosaurs: phylogenetic relationships and functional implications. Memoir of the Society of Vertebrate Paleontology, 2, 1 - 53.","Cruickshank, A. 1979. The ankle joint in some early archosaurs. South African Journal of Science, 75, 168 - 178.","Cabreira, S. F., Kellner, A. W. A., Dias-da-Silva, S., Roberto-da-Silva, L., Bronzati, M., Marsola, J. C., Muller €, R. T., Bittencourt, J. S., Batista, B. J., Raugust. T., Carrilho, R. & Langer, M. C. 2016. A unique Late Triassic dinosauromorph assemblage reveals dinosaur ancestral anatomy and diet. Current Biology, 26, 3090 - 3095.","Baron, M. G., Norman, D. B. & Barrett, P. M. 2017. A new hypothesis of dinosaur relationships and early dinosaur evolution. Nature, 543, 501 - 506.","Hutchinson, J. R. 2001. The evolution of femoral osteology and soft tissues on the line to extant birds (Neornithes). Zoological Journal of the Linnean Society, 131, 169 - 197.","Langer, M. C. & Ferigolo, J. 2013. The Late Triassic dinosauromorph Sacisaurus agudoensis (Caturrita Formation; Rio Grande do Sul, Brazil): anatomy and affinities. Geological Society of London, Special Publications, 379, 353 - 392.","Clark, J. M. & Sues, H. - D. 2002. Two new basal crocodylomorph archosaurs from the Lower Jurassic and the monophyly of the Sphenosuchia. Zoological Journal of the Linnean Society, 136, 77 - 95.","Baczko, M. B., Desojo, J. B. & Ponce, D. 2019. Postcranial anatomy and osteoderm histology of Riojasuchus tenuisceps and a phylogenetic update on Ornithosuchidae (Archosauria, Pseudosuchia). Journal of Vertebrate Paleontology, 39, e 1693396. doi: 10.1080 / 02724634.2019. 1693396","Piechowski, R., TaLanda, M. & Dzik, J. 2014. Skeletal variation and ontogeny of the Late Triassic dinosauriform Silesaurus opolensis. Journal of Vertebrate Paleontology, 34, 1383 - 1393.","Garcia, M. S., M uller €, R. T., Da-Rosa, A. A. & Dias-da- Silva, S. 2019. The oldest known co-occurrence of dinosaurs and their closest relatives: a new lagerpetid from a Carnian (Upper Triassic) bed of Brazil with implications for dinosauromorph biostratigraphy, early diversification and biogeography. Journal of South American Earth Sciences, 91, 302 - 319.","Oliveira, T. V. de, Soares, M. B. & Schultz, C. L. 2010. Trucidocynodon riograndensis gen. nov. et sp. nov. (Eucynodontia), a new cynodont from the Brazilian Upper Triassic (Santa Maria Formation). Zootaxa, 2382, 1 - 71.","Cabreira, S. F., Schultz, C. L., Bittencourt, J. S., Soares, M. B., Fortier, D. C., Silva, L. R. & Langer, M. C. 2011. New stem-sauropodomorph (Dinosauria, Saurischia) from the Triassic of Brazil. Naturwissenschaften, 98, 1035 - 1040.","Pretto, F. A., Langer, M. C. & Schultz, C. L. 2019. A new dinosaur (Saurischia: Sauropodomorpha) from the Late Triassic of Brazil provides insights on the evolution of sauropodomorph body plan. Zoological Journal of the Linnean Society, 185, 388 - 416.","Arcucci, A. B., Previtera, M. E. & Mancuso, A. C. 2019. Ecomorphology and bone microstructure of Proterochampsia from the Chanares Formation. Acta Palaeontologica Polonica, 64, 157 - 170."]}
Databáze: OpenAIRE