A new approach for calculating the real stability radius
Autor: | Melina A. Freitag, Alastair Spence |
---|---|
Rok vydání: | 2013 |
Předmět: |
Jordan matrix
Hamiltonian matrix Computer Networks and Communications Applied Mathematics Numerical analysis Mathematical analysis Critical point (mathematics) Computational Mathematics Singular value Stability radius symbols.namesake Determinant method symbols Software Eigenvalues and eigenvectors Mathematics |
Zdroj: | BIT Numerical Mathematics. 54:381-400 |
ISSN: | 1572-9125 0006-3835 |
DOI: | 10.1007/s10543-013-0457-x |
Popis: | We present a new fast algorithm to compute the real stability radius with respect to the open left half plane which is an important problem in many engineering applications. The method is based on a well-known formula for the real stability radius and the correspondence of singular values of a transfer function to pure imaginary eigenvalues of a three-parameter Hamiltonian matrix eigenvalue problem. We then apply the implicit determinant method, used previously by the authors to compute the complex stability radius, to find the critical point corresponding to the desired singular value. This corresponds to a two-dimensional Jordan block for a pure imaginary eigenvalue in the parameter dependent Hamiltonian matrix. Numerical results showing quadratic convergence of the algorithm are given. |
Databáze: | OpenAIRE |
Externí odkaz: |