Popis: |
Central-station power plants (CSPP) are the main provider of energy today. In the process of power generation at central-power stations, about 67% of primary energy is wasted. Distributed cogeneration or combined heat and power (CHP) systems are an alternative to central-station power plants. In these systems, an electrical generation system located in a residence or at a commercial site consumes natural gas to generate electricity locally and then the exhaust heat is utilized for local heating needs (in contrast to being wasted at central-stations). Microturbines offer a number of potential advantages compared to other technologies for small-scale power generation. For example, compact size and low-weight leading to reduced civil engineering costs, a small number of moving parts, lower noise and vibration, multi-fuel capabilities, low maintenance cost as well as opportunities for lower emissions. Inverter generators allow using micro-turbines of different shaft rotation speed that opens opportunities to unit optimization at off-design modes. The common approach to predict the off-design performance of gas turbine unit is the mapping of the compressor and the turbine separately and the consequent matching of common operation points. However, the above-mentioned approach might be rather inaccurate if the unit has some secondary flows. In this article an alternative approach for predicting off-design performance without using component maps is presented. Here the off-design performance is done by direct calculation of the components performances. On each off-design mode, the recalculation of the characteristic of all scheme components, including a compressor, gas turbine, combustor, recuperator and secondary flow system is performed. The different approaches for obtaining the performance at off-design modes considering the peculiarities of the gas turbine engine are presented in this paper. |