MWCNT-embedded Li4Ti5O12 microspheres interfacially modified with polyaniline as ternary composites for high-performance lithium ion battery anodes
Autor: | Kuen Chan Lee, Yu-Sheng Hsiao, Chieh Lin Chung, Jui Hsiung Huang, Cai Wan Chang-Jian, Jia An Chou, Er Chieh Cho, Po Cheng Ho, Jen Hsien Huang |
---|---|
Rok vydání: | 2020 |
Předmět: |
010302 applied physics
Materials science Ternary numeral system Process Chemistry and Technology 02 engineering and technology Carbon nanotube 021001 nanoscience & nanotechnology 01 natural sciences Lithium-ion battery Surfaces Coatings and Films Electronic Optical and Magnetic Materials law.invention chemistry.chemical_compound chemistry Polymerization law 0103 physical sciences Polyaniline Materials Chemistry Ceramics and Composites Surface modification Composite material In situ polymerization 0210 nano-technology Ternary operation |
Zdroj: | Ceramics International. 46:6801-6810 |
ISSN: | 0272-8842 |
DOI: | 10.1016/j.ceramint.2019.11.172 |
Popis: | In this study we used a spray-drying process and in situ polymerization to construct ternary composites of Li4Ti5O12 (LTO) embedded with multi-walled carbon nanotubes (MWCNTs) and interfacially modified with polyaniline (PANI). In these composites, the introduced MWCNTs served as conductive backbones within the spray-dried LTO microspheres, thereby lowering the internal resistance of the microcomposites. The polymerized PANI acted as a conductive adhesive to strengthen the interactions between the MWCNTs and the LTO, leading to a sturdier interface and enhanced ionic transport properties. With the combined effects of the embedded MWCNTs and the interfacially polymerized PANI, we observed significant enhancements in both the conductivity and the ionic diffusion kinetics of the LTO composites. As a result, the ternary composites displayed outstanding electrochemical performance, including enhanced rate capability and remarkable cycling stability. The ternary system delivered a discharge capacitance (134.98 mA h/g) at 20 C that was higher than those of bare LTO (38.6 mA h/g) and MWCNT/LTO (114.88 mA h/g). Furthermore, the composites also exhibited 92.7% retention of their specific capacitance after 200 repeated charge/discharge tests, indicating their excellent cycling life. |
Databáze: | OpenAIRE |
Externí odkaz: |