Direct and inverse results on row sequences of generalized Padé approximants to polynomial expansions
Autor: | Nattapong Bosuwan |
---|---|
Rok vydání: | 2018 |
Předmět: |
Polynomial
Mathematics::Complex Variables General Mathematics 010102 general mathematics Mathematics::Classical Analysis and ODEs Inverse 010103 numerical & computational mathematics Function (mathematics) 01 natural sciences Convergence (routing) Condensed Matter::Statistical Mechanics Applied mathematics Padé approximant Gravitational singularity 0101 mathematics Mathematics |
Zdroj: | Acta Mathematica Hungarica. 157:191-219 |
ISSN: | 1588-2632 0236-5294 |
DOI: | 10.1007/s10474-018-0878-8 |
Popis: | Starting from the orthogonal and Faber polynomial expansions of a function F, we study the asymptotic behaviors of two generalized Pade approximations (orthogonal Pade approximation and Pade–Faber approximation). We obtain both direct and inverse results relating the convergence of the poles of these approximants and the singularities of F. Thereby, we obtain analogues of theorems by A. A. Gonchar and S. P. Suetin. |
Databáze: | OpenAIRE |
Externí odkaz: |