Products of quasireflections and transvections over local rings

Autor: Erich W. Ellers, Rolfdieter Frank
Rok vydání: 1988
Předmět:
Zdroj: Journal of Geometry. 31:69-78
ISSN: 1420-8997
0047-2468
DOI: 10.1007/bf01222386
Popis: Let R be a commutative local ring and M a free R-module of rank n. The module M is endowed with a metric structure given by a sesquilinear form or by a quadratic form. We show, every isometry π of M is a product of quasireflections or transvections. We determine the minimal number of factors needed in any factorization of π if the path of π is a subspace. For all other isometries we obtain only an upper bound.
Databáze: OpenAIRE