Klein-Gordon-Schrödinger system: Dinucleon field
Autor: | Yanping Ran, Qihong Shi |
---|---|
Rok vydání: | 2017 |
Předmět: |
Physics
Field (physics) Weak topology 010102 general mathematics Statistical and Nonlinear Physics Lipschitz continuity Space (mathematics) 01 natural sciences Schrödinger equation 010101 applied mathematics symbols.namesake Compact space symbols 0101 mathematics Klein–Gordon equation Mathematical Physics Schrödinger's cat Mathematical physics |
Zdroj: | Journal of Mathematical Physics. 58:111509 |
ISSN: | 1089-7658 0022-2488 |
DOI: | 10.1063/1.4998214 |
Popis: | In this paper, we consider the 3-dimensional Klein-Gordon-Schrodinger system under the dinucleon interactions. By introducing the atomic spaces and establishing local Strichartz estimates for the perturbed Schrodinger equation to overcome the lack of compactness in whole space, we prove the unique solvability in the energy space. Additionally, we derive a Lipschitz estimate in a weak topology for the linearized equations to obtain the continuous dependence on the initial data. |
Databáze: | OpenAIRE |
Externí odkaz: |