Popis: |
Wheat is the crop most widely grown in the world and provides the daily protein and 20% food calories for 4.5 billion people. It is crucial to understand the genetic basis of grain hardness for improving wheat quality. In order to explore the molecular basis of the formation of wheat grain hardness, two wheat cultivars Chuanmai 66 and Shumai 969 with significant hardness difference in southwest wheat region were selected to analyze the proteins differential expression by TMT quantitative proteomics (tandem mass tags) and bioinformatic methods of function and pathway enrichment analysis. A total of 6020 effective proteins were identified and quantified, including 113 differentially expressed proteins (DEPs), of which 69 were up-regulated and 44 were down-regulated in soft wheat Chuanmai 66. These DEPs were enriched into 65 GO terms, including a biological process term, a cellular component term and six molecular function terms at extremely significant level. Based on the enrichment analysis, we suggested that nutrient reservoir activity proteins, enzyme inhibitor proteins and glutathione metabolism proteins might participate in the formation of wheat grain hardness, and grain hardness related proteins might mainly distribute in the extracellular region of cells and had defensive function. According to the phylogenetic analysis, it was inferred that puroindolines and its homologous proteins might be as not only wheat grain storage proteins, but also enzyme inhibitors regulating grain development. This study provides a basis for further exploring the genetic mechanism of wheat grain hardness. |