Structural behaviour of MMD labeling on some SSP bipartite graphs
Autor: | R. Mary Jeya Jothi, R. Revathi |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | The Journal of Analysis. 27:173-178 |
ISSN: | 2367-2501 0971-3611 |
Popis: | A graph G(V, E) with n vertices is said to have modular multiplicative divisor (MMD) labeling if there exist a bijection f:V(G) → {1, 2,…,n} and the induced function f*:E(G) → {0, 1, 2,…,n − 1}where f*(uv) = f(u)f(v)(mod n) for all uv ∊ E(G) such that n divides the sum of all edge labels of G. The graph G is super strongly perfect (SSP) if every induced subgraph H of G contains a minimal dominating set that meets all the maximal cliques of H. This paper investigates some families of SSP bipartite graph structure using MMD labeling. |
Databáze: | OpenAIRE |
Externí odkaz: |