Structural properties of the donor indium in nanocrystalline ZnO
Autor: | Herbert Wolf, Th. Agne, Th. Wichert, V. Koteski, H. E. Mahnke, M. Deicher |
---|---|
Rok vydání: | 2005 |
Předmět: |
Nuclear and High Energy Physics
Materials science Extended X-ray absorption fine structure Doping chemistry.chemical_element Crystal structure Condensed Matter Physics Atomic and Molecular Physics and Optics Nanocrystalline material Spectral line Condensed Matter::Materials Science Crystallography K-edge chemistry Physics::Atomic and Molecular Clusters Physical and Theoretical Chemistry Spectroscopy Indium |
Zdroj: | Hyperfine Interactions. 159:55-61 |
ISSN: | 1572-9540 0304-3843 |
DOI: | 10.1007/s10751-005-9081-8 |
Popis: | The structural properties of the nanocrystalline semiconductor ZnO (nano-ZnO) doped with the donor Indium were investigated by perturbed γγ angular correlation spectroscopy (PAC) and extended X-ray absorption fine structure measurements (EXAFS). Up to an average concentration of one In atom per nanocrystallite, PAC measurements show that about 12% of the 111In atoms are incorporated on substitutional Zn sites. At higher In concentrations, new In defect complexes are visible in the PAC spectra, which dominate the spectra if the average In concentration exceeds one In atoms per nanocrystallite. In addition, the local environment of Zn and In atoms in In doped nano-ZnO was investigated by EXAFS. The measurements at the K edge of Zn show that the crystal structure of nano-ZnO corresponds to bulk ZnO. In heavily In doped nano-ZnO the EXAFS experiments at the K edge of In exhibit an expansion of the first O shell about the In site. Since about four O atoms are detected in this first shell a substitutional incorporation of the In atoms in the ZnO lattice is suggested. The second shell to be occupied by Zn atoms as well as higher shells are almost invisible, which might have the same microscopic origin as the occurrence of defect complexes observed by PAC. |
Databáze: | OpenAIRE |
Externí odkaz: |