Direct observation of Cu, Zn cation disorder in Cu2 ZnSnS4 solar cell absorber material using aberration corrected scanning transmission electron microscopy
Autor: | Jon Major, M. C. J. Goodman, Richard Claridge, Budhika G. Mendis, Mervyn D Shannon, Douglas P. Halliday, Ken Durose |
---|---|
Rok vydání: | 2012 |
Předmět: |
Photoluminescence
Renewable Energy Sustainability and the Environment Chemistry Analytical chemistry Carrier lifetime Condensed Matter Physics Crystallographic defect Molecular physics Electronic Optical and Magnetic Materials law.invention Condensed Matter::Materials Science Band bending Depletion region law Solar cell Atom Scanning transmission electron microscopy Electrical and Electronic Engineering |
Zdroj: | Progress in Photovoltaics: Research and Applications. 22:24-34 |
ISSN: | 1062-7995 |
DOI: | 10.1002/pip.2279 |
Popis: | Chemical analysis of individual atom columns was carried out to determine the crystal structure and local point defect chemistry of Cu2ZnSnS4. Direct evidence for a nanoscale composition inhomogeneity, in the form of Zn enrichment and Cu depletion, was obtained. The lateral size of the composition inhomogeneity was estimated to be between ~1.5 and 5 nm. Photoluminescence confirmed the presence of a broad donor–acceptor transition consistent with the observed cation disorder. Areas of relatively high concentration of ZnCu + antisite atom donors locally increases the electrostatic potential and gives rise to band bending. Troughs in the conduction band and peaks in the valence band are ‘potential wells’ for electrons and holes, respectively. For a solar cell, these prevent minority carrier electrons from diffusing towards the edge of the space charge region, thereby reducing the carrier separation efficiency as well as reducing the carrier collection efficiency of majority carrier holes. Furthermore, electrons and holes ‘trapped’ within potential wells in close proximity have a high probability of recombining, so that the carrier lifetime is also reduced. High quality Cu2ZnSnS4 crystals free from composition inhomogeneities are therefore required for achieving high efficiency solar cell devices. |
Databáze: | OpenAIRE |
Externí odkaz: |