LATTICE POINTS ON THE HOMOGENEOUS CUBIC EQUATION WITH FOUR UNKNOWNS x2 - xy + y2 + 4w2 = 8z3
Autor: | V.A Bindu, Manju Somanath, Radhika Das |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | International Journal of Research -GRANTHAALAYAH. 8 |
ISSN: | 2350-0530 2394-3629 |
DOI: | 10.29121/granthaalayah.v8.i8.2020.932 |
Popis: | The Homogeneous cubic equation with four unknowns represented by the equation x2 - xy + y2 + 4w2 = 8z3 is analyzed for its patterns of non zero distinct integral solutions. Here we exhibit four different patterns. In each pattern we can find some interesting relations between the solutions and special numbers like Polygonal number, Three-Dimensional Figurate number, Star number, Rhombic Dodecahedral number etc. |
Databáze: | OpenAIRE |
Externí odkaz: |