On unique solvability of the full three-dimensional Ericksen–Leslie system
Autor: | Gregory A. Chechkin, V. N. Samokhin, M. S. Romanov, Tudor S. Ratiu |
---|---|
Rok vydání: | 2016 |
Předmět: |
Marketing
Strategy and Management 010102 general mathematics Mathematical analysis Mathematics::Analysis of PDEs System of linear equations 01 natural sciences Dirichlet distribution Domain (mathematical analysis) 010101 applied mathematics Strong solutions symbols.namesake Bounded function Media Technology symbols Initial value problem General Materials Science Boundary value problem Uniqueness 0101 mathematics Mathematics Mathematical physics |
Zdroj: | Comptes Rendus Mécanique. 344:459-463 |
ISSN: | 1631-0721 |
DOI: | 10.1016/j.crme.2016.02.010 |
Popis: | In this paper, we study the full three-dimensional Ericksen–Leslie system of equations for the nematodynamics of liquid crystals. We announce the short-time existence and uniqueness of strong solutions for the initial value problem in the periodic case and in a bounded domain with Dirichlet- and Neumann-type boundary conditions. |
Databáze: | OpenAIRE |
Externí odkaz: |