Construction and Reduction Methods of Web Spam Identification Index System

Autor: Yuancheng Li, Xiangqian Nie, Rong Huang
Rok vydání: 2019
Předmět:
Zdroj: Recent Patents on Computer Science. 12:202-211
ISSN: 2213-2759
DOI: 10.2174/2213275912666181127130120
Popis: Background: With the rapid development of the Internet, the number of web spam has increased dramatically in recent years, which has wasted search engine storage and computing power on a massive scale. To identify the web spam effectively, the content features, link features, hidden features and quality features of web page are integrated to establish the corresponding web spam identification index system. However, the index system is highly correlation dimension. Methods: An improved method of autoencoder named stacked autoencoder neural network (SAE) is used to realize the reduction of the web spam identification index system. Results: The experiment results show that our method could reduce effectively the index of web spam and significantly improves the recognition rate in the following work. Conclusion: An autoencoder based web spam indexes reduction method is proposed in this paper. The experimental results show that it greatly reduces the temporal and spatial complexity of the future web spam detection model.
Databáze: OpenAIRE