Improved anticancer potency by head-to-tail cyclization of short cationic anticancer peptides containing a lipophilicβ2,2-amino acid
Autor: | Johan Isaksson, Veronika Tørfoss, Bjørn-Olav Brandsdal, Cristiane de A. Cavalcanti-Jacobsen, Morten B. Strøm, Hans J. Vogel, Trude Anderssen, Gøril Eide Flaten, Leonard T. Nguyen, Dominik Ausbacher, Martina Havelkova |
---|---|
Rok vydání: | 2012 |
Předmět: |
Pharmacology
chemistry.chemical_classification Stereochemistry Organic Chemistry Peptide General Medicine Biochemistry Cyclic peptide Amino acid chemistry.chemical_compound chemistry Structural Biology Drug Discovery Amphiphile Molecular Medicine Structure–activity relationship Propidium iodide Cytotoxicity Mode of action Molecular Biology |
Zdroj: | Journal of Peptide Science. 18:609-619 |
ISSN: | 1075-2617 |
DOI: | 10.1002/psc.2441 |
Popis: | We have recently reported a series of synthetic anticancer heptapeptides (H-KKWβ(2,2) WKK-NH(2) ) containing a central achiral and lipophilic β(2,2) -amino acid that display low toxicity against non-malignant cells and high proteolytic stability. In the present study, we have further investigated the effects of increasing the rigidity and amphipathicity of two of our lead heptapeptides by preparing a series of seven to five residue cyclic peptides containing the two most promising β(2,2) -amino acid derivatives as part of the central lipophilic core. The peptides were tested for anticancer activity against human Burkitt's lymphoma (Ramos cells), haemolytic activity against human red blood cells (RBC) and cytotoxicity against healthy human lung fibroblast cells (MRC-5). The results demonstrated a considerable increase in anticancer potency following head-to-tail peptide cyclization, especially for the shortest derivatives lacking a tryptophan residue. High-resolution NMR studies and molecular dynamics simulations together with an annexin-V-FITC and propidium iodide fluorescent assay showed that the peptides had a membrane disruptive mode of action and that the more potent peptides penetrated deeper into the lipid bilayer. The need for new anticancer drugs with novel modes of action is demanding, and development of short cyclic anticancer peptides with an overall rigidified and amphipathic structure is a promising approach to new anticancer agents. |
Databáze: | OpenAIRE |
Externí odkaz: |