The effects of a windborne pollen-provisioning cover crop on the phytoseiid community in citrus orchards in Israel

Autor: Shira Gal, Moshe Inbar, Mor Salomon, Eric Palevsky, Sharon Warburg, Asaf Sadeh
Rok vydání: 2018
Předmět:
Zdroj: Pest Management Science. 75:405-412
ISSN: 1526-498X
DOI: 10.1002/ps.5129
Popis: Background Several phytoseiid species can potentially control the citrus rust mite (CRM). Their effectiveness varies, however, as do their intraguild interactions. Under laboratory conditions, Euseius stipulatus, E. scutalis and Iphiseius degenerans preyed effectively on CRM, whereas Amblyseius swirskii and Typhlodromus athiasae had no effect on CRM. In combination with A. swirskii, Euseius numbers were reduced due to intraguild predation, and consequently CRM suppression was less effective. In the field, predatory mite species can be variably provisioned by windborne pollen released from cover crops such as Rhodes grass (RG). We aimed to determine the effects of RG on the phytoseiid community in two field experiments, on different cultivars (pomelo and Shamouti orange). We also tested these communities for negative interspecific abundance relationships that are expected if their respective laboratory-observed intraguild interactions are manifested in the field. Results Overall, on pomelo, we observed a dominance of A. swirskii, relatively low E. stipulatus and high CRM abundances. Amblyseius swirskii and E. stipulatus abundances were both elevated near RG, despite apparent intraguild predation by A. swirskii. Conversely, T. athiasae abundances were lower near RG, likely due to predation by A. swirskii. On Shamouti, E. stipulatus abundances were much higher than on pomelo and were not negatively related to A. swirskii abundances. There, RG increased E. stipulatus abundance, and CRM was reduced. Conclusion RG cover cropping can enhance CRM control, depending on variation in intraguild interactions among phytoseiids, particularly between A. swirskii and E. stipulatus. These may be modulated by climatic and/or cultivar effects. © 2018 Society of Chemical Industry.
Databáze: OpenAIRE