Electrothermal coupling analysis and experimental verification for wirebond devices
Autor: | Chin Li Kao, Tei Chen Chen |
---|---|
Rok vydání: | 2018 |
Předmět: |
010302 applied physics
Coupling Therm Wire bonding Materials science Mechanical Engineering 020208 electrical & electronic engineering 0103 physical sciences Thermal 0202 electrical engineering electronic engineering information engineering 02 engineering and technology Composite material 01 natural sciences |
Zdroj: | Transactions of the Canadian Society for Mechanical Engineering. 42:268-279 |
ISSN: | 0315-8977 |
DOI: | 10.1139/tcsme-2017-0013 |
Popis: | The thermal performance of a powered wirebond device with package level and board level test specimens was investigated by both analytical and experiment methods. The effects of thickness and thermal conductivity of the molding compound and heat spreader attached to the top surface of the molding compound on the performance of the Au wire and silicon die were modeled and evaluated by three-dimensional electrothermal coupling analysis. An advanced quad flat no-lead (QFN) sample was selected to experimentally measure the maximum allowable current in Au wire for packages either with or without molding compound. Two failure modes, namely the fusing of the wire and the decomposition temperature of the molding compound, were established in analysis. A board level test specimen with a thermal test die was also employed to measure the real time package thermal performance. The major achievement of this work is in the complete combination of modeling, experiment, and optimization for thermal performance evaluation purpose of a powered wirebond device. Results of this physical analysis can provide a reliable and useful guide to estimate the maximum allowable currents in Au wires for a wirebond device under practical application conditions. |
Databáze: | OpenAIRE |
Externí odkaz: |