An absolute sodium abundance for a cloud-free 'hot Saturn' exoplanet

Autor: Nikolov, N, Sing, DK, Fortney, JJ, Goyal, JM, Drummond, B, Evans, TM, Gibson, NP, De Mooij, EJW, Rustamkulov, Z, Wakeford, HR, Smalley, B, Burgasser, AJ, Hellier, C, Helling, Ch, Mayne, NJ, Madhusudhan, N, Kataria, T, Baines, J, Carter, AL, Ballester, GE, Barstow, JK, McCleery, J, Spake, JJ
Předmět:
Popis: Broad absorption signatures from alkali metals, such as the sodium (Na I) and potassium (K I) resonance doublets, have long been predicted in the optical atmospheric spectra of cloud-free irradiated gas giant exoplanets1-3. However, observations have revealed only the narrow cores of these features rather than the full pressure-broadened profiles4-6. Cloud and haze opacity at the day-night planetary terminator are considered to be responsible for obscuring the absorption-line wings, which hinders constraints on absolute atmospheric abundances7-9. Here we report an optical transmission spectrum for the 'hot Saturn' exoplanet WASP-96b obtained with the Very Large Telescope, which exhibits the complete pressure-broadened profile of the sodium absorption feature. The spectrum is in excellent agreement with cloud-free, solar-abundance models assuming chemical equilibrium. We are able to measure a precise, absolute sodium abundance of logεNa = [Formula: see text], and use it as a proxy for the planet's atmospheric metallicity relative to the solar value (Zp/Zʘ = [Formula: see text]). This result is consistent with the mass-metallicity trend observed for Solar System planets and exoplanets10-12.
Databáze: OpenAIRE