Popis: |
We have identified an anion-sensitive Mg2+-ATPase in adenohypophyseal secretory granule membranes. This enzyme is unaffected by sodium, ouabain, and calcium. By electron microscopic morphology, sedimentation properties, nucleotide substrate utilization, and marker enzyme studies, this activity is clearly shown to be intrinsic to the granule membranes. The kinetics for ATP saturation were complex, as curvilinear Lineweaver-Burk plots were obtained with 2 mM magnesium. However, an approach to linearity was obtained (Km for ATP, approximately 0.27 mM) with low concentrations of free magnesium. Many anions and anion-transport blockers significantly influenced enzyme activity. Stimulatory anions in decreasing order of potency were bisulfite greater than sulfite greater than isethionate greater than bicarbonate; Ka values were 2.5 mM for sulfite and 10.8 mM for bicarbonate. Acetate, borate, chloride, citrate, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 2-(N-morpholino)ethanesulfonic acid, nitrite, oxalate, 1,3-piperazinediethanesulfonic acid, and sulfate were without major effect. Inhibitory anions in decreasing potency order were azide greater than thiocyanate greater than fluoride greater than nitrate. Anionic stimulation of the granule membrane Mg2+-ATPase linearized the Lineweaver-Burk plots by shifting the enzyme to its higher Km state. In addition, sulfite competitively reversed the produce inhibition exerted by ADP. Anion transport-blockers inhibited the enzyme; of those tested, the most potent was 4-acetamido-4-isothiocyano-stilbene-2,2'-disulfonic acid, with a Ki of 0.17 mM; pyridoxal phosphate, sulfisoxazole, and ethacrynic acid also inhibited enzyme activity. The protein-binding dye p-sulfobenzene-azo-o-sulfobenzene-azo-beta-naphthol-3,6-disulfonic acid, structurally similar to transport blockers, was a potent inhibitor, with a Ki of 2.8 mM. These data on pituitary secretory granule ATPase raise the possibility that the granule membranes may function in anion or proton transport, perhaps in relation to exocytosis and hormone secretion. |