Inference of lithologic distributions in an alluvial aquifer using airborne transient electromagnetic surveys

Autor: D. R. Pool, L. J. Davis, R. W. Groom, Jesse E. Dickinson
Rok vydání: 2010
Předmět:
Zdroj: GEOPHYSICS. 75:WA149-WA161
ISSN: 1942-2156
0016-8033
DOI: 10.1190/1.3464325
Popis: An airborne transient electromagnetic (TEM) survey was completed in the Upper San Pedro Basin in southeastern Arizona to map resistivity distributions within the alluvial aquifer. This investigation evaluated the utility of 1D vertical resistivity models of the TEM data to infer lithologic distributions in an alluvial aquifer. Comparisons of the resistivity values and layers in the 1D resistivity models of airborne TEM data to 1D resistivity models of ground TEM data, borehole resistivity logs, and lithologic descriptions in drill logs indicated that the airborne TEM identified thick conductive fine-grained sediments that result in semiconfined groundwater conditions. One-dimensional models of ground-based TEM surveys and subsurface lithology at three sites were used to determine starting models and constraints to invert airborne TEM data using a constrained Marquardt-styleunderparameterized method. A maximum structural resolution of six layers underlain by a half-space was determined from the resistivity structure of the 1D models of the ground TEM data. The 1D resistivity models of the airborne TEM data compared well with the control data to depths of approximately [Formula: see text] in areas of thick conductive silt and clay and to depths of [Formula: see text] in areas of resistive sand and gravel. Comparison of a 3D interpolation of the 1D resistivity models to drill logs indicated resistive (mean of [Formula: see text]) coarse-grained sediments along basin margins and conductive (mean of [Formula: see text]) fine-grained sediments at the basin center. Extents of hydrologically significant thick silt and clay were well mapped by the 1D resistivity models of airborne TEM data. Areas of uncertain lithology remain below conductive fine-grained sediments where the 1D resistivity structure is not resolved: in areas where multiple lithologies have similar resistivity values and in areas of high salinity.
Databáze: OpenAIRE