Estimation of Weak Factor Models

Autor: Takashi Yamagata, Yoshimasa Uematsu
Rok vydání: 2019
Předmět:
Zdroj: SSRN Electronic Journal.
ISSN: 1556-5068
DOI: 10.2139/ssrn.3374750
Popis: This paper investigates estimation of sparsity-induced weak factor (sWF) models, with large cross-sectional and time-series dimensions (N and T, respectively). It assumes that the kth largest eigenvalue of a data covariance matrix grows proportionally to N^alpha_k with unknown exponents 0 < alpha_k
Databáze: OpenAIRE