Continuation of separately analytic functions defined on part of a domain boundary
Autor: | S. A. Imomkulov, A. S. Sadullaev |
---|---|
Rok vydání: | 2006 |
Předmět: | |
Zdroj: | Mathematical Notes. 79:869-877 |
ISSN: | 1573-8876 0001-4346 |
DOI: | 10.1007/s11006-006-0098-3 |
Popis: | Let D ⊂ ℂn be a domain with smooth boundary ∂D, let E⊂∂D be a subset of positive Lebesgue measure mes(E) > 0, and let F ⊂ G be a nonpluripolar compact set in a strongly pseudoconvex domain D ⊂ ℂm. We prove that, under an additional condition, each function separately analytic on the set X = (D × F) ∪ (E × G) has a holomorphic contination to the domain \(\rlap{--} X = \{ (z,w) \in D \times G:\omega _{in}^ * (z,E,D) + \omega ^ * (w,F,D) < 1\} \), where ω* is the P-measure and ω*in is the interior P-measure. |
Databáze: | OpenAIRE |
Externí odkaz: |