Harmonic functions with nonlinear Neumann boundary condition and their Morse indices

Autor: Habib Fourti, Mohamed Ben Ayed, Abdelbaki Selmi
Rok vydání: 2017
Předmět:
Zdroj: Nonlinear Analysis: Real World Applications. 38:96-112
ISSN: 1468-1218
DOI: 10.1016/j.nonrwa.2017.04.012
Popis: We consider the solutions of a nonlinear Neumann elliptic equation Δ u = 0 in Ω , ∂ u / ∂ ν = f ( x , u ) on ∂ Ω , where Ω is a bounded open smooth domain in R N , N ≥ 2 and f satisfies super-linear and subcritical growth conditions. We prove that L ∞ -bounds on solutions are equivalent to bounds on their Morse indices.
Databáze: OpenAIRE