Harmonic functions with nonlinear Neumann boundary condition and their Morse indices
Autor: | Habib Fourti, Mohamed Ben Ayed, Abdelbaki Selmi |
---|---|
Rok vydání: | 2017 |
Předmět: |
Applied Mathematics
010102 general mathematics Mathematical analysis General Engineering General Medicine Morse code 01 natural sciences Domain (mathematical analysis) law.invention 010101 applied mathematics Computational Mathematics Nonlinear system Elliptic curve Harmonic function law Bounded function Neumann boundary condition 0101 mathematics General Economics Econometrics and Finance Analysis Mathematics |
Zdroj: | Nonlinear Analysis: Real World Applications. 38:96-112 |
ISSN: | 1468-1218 |
DOI: | 10.1016/j.nonrwa.2017.04.012 |
Popis: | We consider the solutions of a nonlinear Neumann elliptic equation Δ u = 0 in Ω , ∂ u / ∂ ν = f ( x , u ) on ∂ Ω , where Ω is a bounded open smooth domain in R N , N ≥ 2 and f satisfies super-linear and subcritical growth conditions. We prove that L ∞ -bounds on solutions are equivalent to bounds on their Morse indices. |
Databáze: | OpenAIRE |
Externí odkaz: |