On the Number of Zeros of Abelian Integral for a Class of Cubic Hamilton Systems with the Phase Portrait 'Butterfly'
Autor: | Jihua Yang, Shiyou Sui, Liqin Zhao |
---|---|
Rok vydání: | 2019 |
Předmět: |
Abelian integral
Class (set theory) Degree (graph theory) Phase portrait Applied Mathematics Picard–Fuchs equation 01 natural sciences Upper and lower bounds 010101 applied mathematics Combinatorics 0103 physical sciences Discrete Mathematics and Combinatorics 0101 mathematics 010301 acoustics Mathematics |
Zdroj: | Qualitative Theory of Dynamical Systems. 18:947-967 |
ISSN: | 1662-3592 1575-5460 |
DOI: | 10.1007/s12346-019-00321-z |
Popis: | The present paper is devoted to study the number of zeros of Abelian integral for the near-Hamilton system $$\begin{aligned} {\left\{ \begin{array}{ll} \dot{x} = 2y(bx^2+2cy^2)+\varepsilon f(x,y),\\ \dot{y} = 2x(1-2ax^2-by^2)+\varepsilon g(x,y), \end{array}\right. } \end{aligned}$$ where $$a,b,c\in \mathbb {R}$$ , $$b0$$ , $$b^2 |
Databáze: | OpenAIRE |
Externí odkaz: |