On the Number of Zeros of Abelian Integral for a Class of Cubic Hamilton Systems with the Phase Portrait 'Butterfly'

Autor: Jihua Yang, Shiyou Sui, Liqin Zhao
Rok vydání: 2019
Předmět:
Zdroj: Qualitative Theory of Dynamical Systems. 18:947-967
ISSN: 1662-3592
1575-5460
DOI: 10.1007/s12346-019-00321-z
Popis: The present paper is devoted to study the number of zeros of Abelian integral for the near-Hamilton system $$\begin{aligned} {\left\{ \begin{array}{ll} \dot{x} = 2y(bx^2+2cy^2)+\varepsilon f(x,y),\\ \dot{y} = 2x(1-2ax^2-by^2)+\varepsilon g(x,y), \end{array}\right. } \end{aligned}$$ where $$a,b,c\in \mathbb {R}$$ , $$b0$$ , $$b^2
Databáze: OpenAIRE