A multidimensional generalization of some classes of iterative methods
Autor: | Miquel Sànchez, José Manuel Gutiérrez Jiménez, Miquel Noguera Batlle |
---|---|
Rok vydání: | 2016 |
Předmět: |
Numerical Analysis
Mathematical optimization Control and Optimization Iterative method Applied Mathematics Scalar (mathematics) 010103 numerical & computational mathematics 01 natural sciences Integral equation Local convergence 010101 applied mathematics Nonlinear system Rate of convergence Modeling and Simulation Applied mathematics 0101 mathematics Mathematics |
Zdroj: | SeMA Journal. 74:57-73 |
ISSN: | 2281-7875 2254-3902 |
DOI: | 10.1007/s40324-016-0080-2 |
Popis: | In this paper we extend to the multidimensional case some iterative methods that are known in their scalar version. All the schemes considered here are two-step methods with fourth-order local convergence, where the first step is Newton’s method. We analyze the efficiency of these new four algorithms and compare them in terms of the elapsed time needed for their computational implementation. We illustrate our results with some numerical examples and an application to the resolution of the systems arising from a Hammerstein’s integral equation. |
Databáze: | OpenAIRE |
Externí odkaz: |