Well-posedness of 3-D inhomogeneous Navier–Stokes equations with highly oscillatory initial velocity field

Autor: Guilong Gui, Ping Zhang, Hammadi Abidi
Rok vydání: 2013
Předmět:
Zdroj: Journal de Mathématiques Pures et Appliquées. 100:166-203
ISSN: 0021-7824
DOI: 10.1016/j.matpur.2012.10.015
Popis: Without smallness assumption on the variation of the initial density function, we first prove the local well-posedness of 3-D incompressible inhomogeneous Navier–Stokes equations with initial data ( a 0 , u 0 ) in the critical Besov spaces B λ , 1 3 λ ( R 3 ) × B ˙ p , 1 3 p − 1 ( R 3 ) for λ , p given by Theorem 1.1. Then we prove this system is globally well-posed provided that ‖ u 0 ‖ B ˙ p , 1 3 p − 1 is sufficiently small. In particular, this result implies the global well-posedness of 3-D inhomogeneous Navier–Stokes equations with highly oscillatory initial velocity field and any initial density function with a positive lower bound.
Databáze: OpenAIRE