A study of a modified nonlinear dynamical system with fractal-fractional derivative

Autor: Sunil Kumar, R.P. Chauhan, Shaher Momani, Samir Hadid
Rok vydání: 2021
Předmět:
Zdroj: International Journal of Numerical Methods for Heat & Fluid Flow. 32:2620-2639
ISSN: 0961-5539
Popis: Purpose This paper aims to study the complex behavior of a dynamical system using fractional and fractal-fractional (FF) derivative operators. The non-classical derivatives are extremely useful for investigating the hidden behavior of the systems. The Atangana–Baleanu (AB) and Caputo–Fabrizio (CF) derivatives are considered for the fractional structure of the model. Further, to add more complexity, the authors have taken the system with a CF fractal-fractional derivative having an exponential kernel. The active control technique is also considered for chaos control. Design/methodology/approach The systems under consideration are solved numerically. The authors show the Adams-type predictor-corrector scheme for the AB model and the Adams–Bashforth scheme for the CF model. The convergence and stability results are given for the numerical scheme. A numerical scheme for the FF model is also presented. Further, an active control scheme is used for chaos control and synchronization of the systems. Findings Simulations of the obtained solutions are displayed via graphics. The proposed system exhibits a very complex phenomenon known as chaos. The importance of the fractional and fractal order can be seen in the presented graphics. Furthermore, chaos control and synchronization between two identical fractional-order systems are achieved. Originality/value This paper mentioned the complex behavior of a dynamical system with fractional and fractal-fractional operators. Chaos control and synchronization using active control are also described.
Databáze: OpenAIRE