Using Graph Convolutional Networks to Compute Approximations of Dominant Eigenvectors

Autor: Ping-En Lu, Cheng-Shang Chang
Rok vydání: 2020
Předmět:
Zdroj: ACM SIGMETRICS Performance Evaluation Review. 48:3-5
ISSN: 0163-5999
DOI: 10.1145/3439602.3439605
Popis: Graph Convolutional Networks (GCN) have been very popular for the network embedding problem that maps nodes in a graph to vectors in a Euclidean space. In this short paper, we show that a special class of GCNs compute approximations of dominant eigenvectors of symmetric matrices with zero column sums.
Databáze: OpenAIRE