Autor: |
Peter S. Amenta, Philip J. Roos, Lawrence B. Sandberg, David J. Riley, Ida Snyder, Charles D. Boyd, Jan L. Sechler |
Rok vydání: |
2007 |
Předmět: |
|
Zdroj: |
Ciba Foundation Symposium 192 - The Molecular Biology and Pathology of Elastic Tissues |
DOI: |
10.1002/9780470514771.ch8 |
Popis: |
We have constructed several rat tropoelastin minigene recombinants encoding the complete sequence of rat tropoelastin, two isoforms of rat tropoelastin and a truncated tropoelastin lacking the domains encoded by exons 19-31 of the rat gene. Coding and non-coding domains in all these recombinants were placed under the transcriptional control of 3 kb of the promoter domain of the rat tropoelastin gene. These minigenes were used to prepare a total of 28 separate founder lines of transgenic mice. A species-specific reverse-transcriptase polymerase chain reaction (RT-PCR) assay was established to demonstrate the synthesis of rat and mouse tropoelastin mRNA in several tissues obtained from both neonatal and adult transgenic mice. Thermolytic digestion of insoluble elastin isolated from several neonatal mouse tissues revealed the presence of rat tropoelastin peptides in progeny from all those founder mice in which detectable levels of rat tropoelastin mRNA were noted. Phenotypic and histopathological assessment of transgenic and non-transgenic animals revealed the development of two diverse elastic tissue disorders. The progeny of two separate founder lines overexpressing the rat tropoelastin isoform lacking exon 33, developed an emphysematous phenotype in early adulthood. In contrast, transgenic mice, in which expression of the truncated rat tropoelastin minigene lacking exons 19-31 had been observed, died of a ruptured ascending aortic aneurysm. Tropoelastin gene mutations, therefore, will result in heritable disorders of elastic tissue. Moreover, different mutations in the tropoelastin gene will be responsible for very different abnormalities in elastic tissue function. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|