Feature analysis of blind and visual signature data collection protocols based on the identification performance

Autor: Rehab Ibrahem, Meryem Erbilek
Rok vydání: 2017
Předmět:
Zdroj: 2017 9th International Conference on Computational Intelligence and Communication Networks (CICN).
DOI: 10.1109/cicn.2017.8319370
Popis: In this paper, we analyse the differences and similarities of features in the context of blind and visual signing data collection protocols with respect to the signature biometrics identification performance. As a result of this performed experimental analysis, powerful features which maximises system accuracy while minimising the performance differential across different signature data collection protocols (visual and blind signing) is extensively tested and documented.
Databáze: OpenAIRE