New applications of the functional variable method
Autor: | Mustafa Inc, Ibrahim E. Inan, Yavuz Ugurlu |
---|---|
Rok vydání: | 2017 |
Předmět: |
Physics
Special solution Mathematical analysis 01 natural sciences Atomic and Molecular Physics and Optics Electronic Optical and Magnetic Materials 010101 applied mathematics Nonlinear Sciences::Exactly Solvable and Integrable Systems 0103 physical sciences Soliton 0101 mathematics Electrical and Electronic Engineering 010306 general physics Korteweg–de Vries equation Nonlinear Sciences::Pattern Formation and Solitons Parametric statistics Variable (mathematics) |
Zdroj: | Optik. 136:374-381 |
ISSN: | 0030-4026 |
DOI: | 10.1016/j.ijleo.2017.02.058 |
Popis: | In this paper, we study the different types of soliton solutions of the Zoomeron equation and Hirota-Satsuma coupled KdV (HSCKdV) system with the aid of the functional variable method (FVM). Then, we get some special solutions like the bell shaped, triangular and kink soliton solutions. We present the parametric restriction on the coefficients for the existence of obtained solitons. Finally, the remarkable features of such solitons are demonstrated in some figures. |
Databáze: | OpenAIRE |
Externí odkaz: |