Enumerating rc-Invariant Permutations with No Long Decreasing Subsequences

Autor: Eric S. Egge
Rok vydání: 2010
Předmět:
Zdroj: Annals of Combinatorics. 14:85-101
ISSN: 0219-3094
0218-0006
DOI: 10.1007/s00026-010-0053-6
Popis: We use the Robinson-Schensted-Knuth correspondence and Schutzenberger’s evacuation of standard tableaux to enumerate permutations and involutions which are invariant under the reverse-complement map and which have no decreasing subsequences of length k. These enumerations are in terms of numbers of permutations with no decreasing subsequences of length approximately $${{\frac{k}{2}};}$$ we use known results concerning these quantities to give explicit formulas when k ≤ 6.
Databáze: OpenAIRE