Enumerating rc-Invariant Permutations with No Long Decreasing Subsequences
Autor: | Eric S. Egge |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Annals of Combinatorics. 14:85-101 |
ISSN: | 0219-3094 0218-0006 |
DOI: | 10.1007/s00026-010-0053-6 |
Popis: | We use the Robinson-Schensted-Knuth correspondence and Schutzenberger’s evacuation of standard tableaux to enumerate permutations and involutions which are invariant under the reverse-complement map and which have no decreasing subsequences of length k. These enumerations are in terms of numbers of permutations with no decreasing subsequences of length approximately $${{\frac{k}{2}};}$$ we use known results concerning these quantities to give explicit formulas when k ≤ 6. |
Databáze: | OpenAIRE |
Externí odkaz: |