Classical Equiconvergence Problem for the Sturm-Liouville Operator with a Singular Potential
Autor: | I. V. Sadovnichaya |
---|---|
Rok vydání: | 2019 |
Předmět: |
0209 industrial biotechnology
Partial differential equation Integrable system General Mathematics Operator (physics) 010102 general mathematics Sturm–Liouville theory 02 engineering and technology Function (mathematics) Mathematics::Spectral Theory 01 natural sciences 020901 industrial engineering & automation Ordinary differential equation Applied mathematics 0101 mathematics Analysis Mathematics |
Zdroj: | Differential Equations. 55:490-499 |
ISSN: | 1608-3083 0012-2661 |
DOI: | 10.1134/s0012266119040062 |
Popis: | We study the classical problem of equiconvergence of spectral expansions for the Sturm-Liouville operator with a singular potential. We present various conditions on the potential guaranteeing the equiconvergence for the expansions of an arbitrary integrable complex-valued function. |
Databáze: | OpenAIRE |
Externí odkaz: |